Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77.432
Filtrar
1.
J Colloid Interface Sci ; 665: 999-1006, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579390

RESUMO

Piezo-photocatalytic water (deuterium oxide) decomposition is a promising strategy for realizing renewable energy, but the manipulation of the polar center remains a big challenge. This study uses a simple low-temperature hydrothermal process to successfully manufacture ZnmIn2Sm+3 (m = 1-3) (ZnIn2S4, Zn2In2S5 and Zn3In2S6). Incorporating both experimental and theoretical analyses, the structural contraction and local polarization of the Zn-S bond in Zn2In2S5 enhance the piezoelectric response and surface charge accumulation, which facilitate charge transfer and reduce the activation energy of water. Remarkably, Zn2In2S5 exhibits excellent piezoelectric photocatalytic total water splitting performance (H2/O2: 4284.72/1967.00 µmol g-1h-1), which is 1.77 times that of photocatalytic performance. Moreover, a significant enhancement in D2O splitting performance can be obtained for the optimized Zn2In2S5. Our work offers valuable insights into the disclosure of local polarization in catalysts for enhancing piezo-photocatalytic overall water splitting.

2.
J Colloid Interface Sci ; 665: 1054-1064, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579388

RESUMO

The rational design of morphology and heterogeneous interfaces for non-precious metal electrocatalysts is crucial in electrochemical water decomposition. In this paper, a bifunctional electrocatalyst (Ni/NiFe LDH), which coupling nickel with nickel-iron layer double hydroxide (NiFe LDH), is synthesized on carbon cloth. At current density of 10 mA cm-2, the Ni/NiFe LDH exhibits a low hydrogen evolution reaction (HER) overpotential of only 36 mV due to the accelerated electrolyte penetration, which is caused by superhydrophilic interface. Moreover, an alkaline electrolyzer is formed and provide a current density of 10 mA cm-2 with a voltage of only 1.49 V. It is confirmed by the density functional theory (DFT) that electron from the Ni layer is transferred to NiFe LDH layer, redistributing the local electron density around the heterogeneous phase interface. Thus, the Gibbs free energy for hydrogen adsorption is optimized. This work provides a promising strategy for the rational regulation of electrons at heterogeneous interfaces and the synthesis of flexible electrocatalysts.

3.
Sci Total Environ ; 927: 172410, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608884

RESUMO

There is little evidence of the long-term consequences of maintaining sanitary hot water at high temperatures on the persistence of Legionella in the plumbing system. The aims of this study were to describe the persistence and genotypic variability of L. pneumophila in a hospital building with two entirely independent hot water distribution systems, and to estimate the thermotolerance of the genotypic variants by studying the quantity of VBNC L. pneumophila. Eighty isolates from 55 water samples obtained between the years 2012-2017 were analyzed. All isolates correspond to L. pneumophila serogroup 6. The isolates were discriminated in four restriction patterns by pulsed-field gel electrophoresis. In one installation, pattern A + Aa predominated, accounting for 75.8 % of samples, while the other installation exhibited pattern B as the most frequent (81.8 % of samples; p < 0.001). The mean temperature of the isolates was: 52.6 °C (pattern A + Aa) and 55.0 °C (pattern B), being significantly different. Nine strains were selected as representative among patterns to study their thermotolerance by flow-cytometry after 24 h of thermic treatment. VBNC bacteria were detected in all samples. After thermic treatment at 50 °C, 52.0 % of bacteria had an intact membrane, and after 55 °C this percentage decreased to 23.1 %. Each pattern exhibited varying levels of thermotolerance. These findings indicate that the same hospital building can be colonized with different predominant types of Legionella if it has independent hot water installations. Maintaining a minimum temperature of 50 °C at distal points of the system would allow the survival of replicative L. pneumophila. However, the presence of Legionella in hospital water networks is underestimated if culture is considered as the standard method for Legionella detection, because VBNC do not grow on culture plates. This phenomenon can carry implications for the Legionella risk management plans in hospitals that adjust their control measures based on the microbiological surveillance of water.

4.
Sci Rep ; 14(1): 8580, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615124

RESUMO

Underwater explosions (UNDEX) generate shock waves that interact with the air-water interface and structures, leading to the occurrence of rarefaction waves and inducing cavitation phenomena. In deep-water explosions, complex coupling relationships exist between shock wave propagation, bubble motion, and cavitation evolution. The shock wave initiates the formation of cavitation, and their growth and collapse are influenced by the pressure field. The collapsing bubbles generate additional shock waves and fluid motion, affecting subsequent shock wave propagation and bubble behavior. This intricate interaction significantly impacts the hydrodynamic characteristics of deep-water explosions, including pressure distribution, density, and phase changes in the surrounding fluid. In this paper, we utilize a two-fluid phase transition model to capture the evolution of cavitation in deep-water explosions. Our numerical results demonstrate that the introduction of a two-phase vapor-liquid phase change model is necessary to accurately capture scenarios involving prominent evaporation or condensation phenomena. Furthermore, we find that the cavitation produced by the same charge under different explosion depths exhibits significant differences, as does the peak value of cavitation collapse pressure. Similarly, the cavitation produced by different charge quantities under the same explosion depth varies, and the relationship between cavitation volume and charge quantity is not a simple linear increase. The research methods and results presented in this paper provide an important reference for studying the dynamic characteristics of deep-water explosions.

5.
Carbohydr Polym ; 335: 122081, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616099

RESUMO

The study explored the plasma-activated water (PAW)-assisted heat-moisture treatment (HMT) on the structural, physico-chemical properties, and in vitro digestibility of extrusion-recrystallized starch. Native starch of hausa potatoes underwent modification through a dual process involving PAW-assisted HMT (PHMT) followed by extrusion-recrystallization (PERH) using a twin-screw extruder. The PHMT sample showed surface roughness and etching with a significantly greater (p ≤ 0.05) RC (20.12 %) and ΔH (5.86 J/g) compared to DHMT. In contrast, PERH-induced structural damage, resulting in an irregular block structure, and altered the crystalline pattern from A to B + V-type characterized by peaks at 17.04°, 19.74°, 22°, and 23.94°. DSC analysis showed two endothermic peaks in all the extrusion-recrystallized samples, having the initial peak attributed to the melting of structured amylopectin chains and the second one linked to the melting of complexes formed during retrogradation. Dual-modified samples displayed notably increased transition temperatures (To1 74.54 and 74.17 °C, To2 122.65 and 121.49 °C), along with increased RS content (43.76 %-45.30 %). This study envisages a novel approach for RS preparation and broadens the utilization of PAW in starch modification synergistically with environmentally friendly techniques.


Assuntos
Hipertermia Induzida , Solanum tuberosum , Temperatura Alta , Amido , Água
6.
Quant Imaging Med Surg ; 14(4): 2884-2903, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617145

RESUMO

Background: Multi-echo chemical-shift-encoded magnetic resonance imaging (MRI) has been widely used for fat quantification and fat suppression in clinical liver examinations. Clinical liver water-fat imaging typically requires breath-hold acquisitions, with the free-breathing acquisition method being more desirable for patient comfort. However, the acquisition for free-breathing imaging could take up to several minutes. The purpose of this study is to accelerate four-dimensional free-breathing whole-liver water-fat MRI by jointly using high-dimensional deep dictionary learning and model-guided (MG) reconstruction. Methods: A high-dimensional model-guided deep dictionary learning (HMDDL) algorithm is proposed for the acceleration. The HMDDL combines the powers of the high-dimensional dictionary learning neural network (hdDLNN) and the chemical shift model. The neural network utilizes the prior information of the dynamic multi-echo data in spatial respiratory motion, and echo dimensions to exploit the features of images. The chemical shift model is used to guide the reconstruction of field maps, R2∗ maps, water images, and fat images. Data acquired from ten healthy subjects and ten subjects with clinically diagnosed nonalcoholic fatty liver disease (NAFLD) were selected for training. Data acquired from one healthy subject and two NAFLD subjects were selected for validation. Data acquired from five healthy subjects and five NAFLD subjects were selected for testing. A three-dimensional (3D) blipped golden-angle stack-of-stars multi-gradient-echo pulse sequence was designed to accelerate the data acquisition. The retrospectively undersampled data were used for training, and the prospectively undersampled data were used for testing. The performance of the HMDDL was evaluated in comparison with the compressed sensing-based water-fat separation (CS-WF) algorithm and a parallel non-Cartesian recurrent neural network (PNCRNN) algorithm. Results: Four-dimensional water-fat images with ten motion states for whole-liver are demonstrated at several R values. In comparison with the CS-WF and PNCRNN, the HMDDL improved the mean peak signal-to-noise ratio (PSNR) of images by 9.93 and 2.20 dB, respectively, and improved the mean structure similarity (SSIM) of images by 0.058 and 0.009, respectively, at R=10. The paired t-test shows that there was no significant difference between HMDDL and ground truth for proton-density fat fraction (PDFF) and R2∗ values at R up to 10. Conclusions: The proposed HMDDL enables features of water images and fat images from the highly undersampled multi-echo data along spatial, respiratory motion, and echo dimensions, to improve the performance of accelerated four-dimensional (4D) free-breathing water-fat imaging.

7.
Environ Epidemiol ; 8(2): e300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617421

RESUMO

Background: Direct potable reuse (DPR) involves adding purified wastewater that has not passed through an environmental buffer into a water distribution system. DPR may help address water shortages and is approved or is under consideration as a source of drinking water for several water-stressed population centers in the United States, however, there are no studies of health outcomes in populations who receive DPR drinking water. Our objective was to determine whether the introduction of DPR for certain public water systems in Texas was associated with changes in birth defect prevalence. Methods: We obtained data on maternal characteristics for all live births and birth defects cases regardless of pregnancy outcome in Texas from 2003 to 2017 from the Texas Birth Defects Registry and birth and fetal death records. The ridge augmented synthetic control method was used to model changes in birth defect prevalence (per 10,000 live births) following the adoption of DPR by four Texas counties in mid-2013, with county-level data on maternal age, percent women without a high school diploma, percent who identified as Hispanic/Latina or non-Hispanic/Latina Black, and rural-urban continuum code as covariates. Results: There were nonstatistically significant increases in prevalence of all birth defects collectively (average treatment effect in the treated = 53.6) and congenital heart disease (average treatment effect in the treated = 287.3) since June 2013. The estimated prevalence of neural tube defects was unchanged. Conclusions: We estimated nonstatistically significant increases in birth defect prevalence following the implementation of DPR in four West Texas counties. Further research is warranted to inform water policy decisions.

8.
Heliyon ; 10(7): e28860, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617941

RESUMO

Protected areas are significant due to the high value of natural resources they shelter. This study's primary objective is to assess the quality status of the water resources (13 lakes and Tisa River) localized in the protected area of Tisa River on the territory of Romania. A number of 13 lakes and surface water (Tisa River) situated in the protected area through the Natura 2000 ecological network are studied. The chemistry and potential pollution status were analyzed by measuring and analyzing a set of twenty elements and sixteen physico-chemical parameters. The potential impact of anthropogenic activities was settled through the applied analysis and obtained results. A potential human health risk was noticed. Results indicated that waters are rich in Ni and Fe probably due to interaction with groundwater rich in Fe and Ni. Waters are characterized by potential contamination, which if directly or through the food chain consumed could negatively influence the human health. Piper and Gibbs plots indicated that the studied waters are divided into three categories based on water-rock interactions: mixed Ca2+-Na+-HCO3-, CaCO3-, and Na+-HCO3-. Likewise, the applied pollution indices (Heavy metal Pollution Index, HPI and Heavy metal Evaluation Index, HEI) indicated three pollution categories correlated to the As, Ni and Fe amounts. The findings of this research imply that the chemistry of the studied lakes and surface waters is influenced by the geogenic origin and emergence of anthropogenic activities. The significance of this research is related to understanding of mechanisms that influence the water quality, improving and conserving the natural water resources, and correspondingly understanding if any potential human health risks could be identified.

9.
Front Microbiol ; 15: 1374568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618485

RESUMO

CrAssphages are human gut bacteriophages with potential use as an indicator of human fecal contamination in water and other environmental systems. We determined the prevalence and abundance of crAssphages in water, food, and fecal samples and compared these estimates with the prevalence of norovirus. Samples were tested using two crAssphage-specific qPCR assays (CPQ056 and TN201-203) and for norovirus using TaqMan realtime RT-PCR. CrAssphage was detected in 40% of human fecal specimens, 61% of irrigation water samples, 58.5% of stream water samples, and 68.5% of fresh leafy greens samples. Interestingly, across all sample categories, crAssphage concentrations were 2-3 log10 higher than norovirus concentrations. The correlation of detection of crAssphage and norovirus was significant for the irrigation water samples (r = 0.74, p = 7.4e-06). Sequences obtained from crAssphage positive samples from human fecal and stream water samples phylogenetically clustered with genotype I crAssphages, whereas sequences derived from irrigation water samples clustered differently from other genotypes. Our data show that crAssphages were prevalent in norovirus-positive water samples and in fresh leafy green samples, there was a strong correlation between the presence of crAssphage and norovirus. CrAssphage genomic copies were consistently higher than norovirus copies in all sample types. Overall, our findings suggest that crAssphages could be used as reliable indicators to monitor fecal-borne virus contamination within the food safety chain.

10.
Environ Geochem Health ; 46(5): 175, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619636

RESUMO

Alpine lakes are aquatic ecosystems that maintain and regulate water supply for the downstream streams, rivers, and other reservoirs. This study examined the water characteristics of various alpine lakes in Gilgit-Baltistan, Northern Pakistan. For this purpose, water was sampled and investigated for basic parameters, anions, and cations using the multi-parameter analyzers and atomic absorption spectrophotometer. Physicochemical parameters of alpine lakes were noted under the World Health Organization water guidelines, except for fluoride (F-) and turbidity in 4.3% and 36% of samples, respectively. Water quality index (WQI) classified samples (93%) as excellent and good quality (7%). Results showed maximum chronic daily intake values (0.14 ± 0.01 mg/kg-day) for nitrate (NO3-) and hazard quotient (0.80 ± 0.24) for F- in children via water intake from Upper Kachura and Shausar Lakes, respectively. Statistical analyses of Piper and Gibbs's plots revealed that the water quality is mainly characterized by bedrock geology.


Assuntos
Ecossistema , Qualidade da Água , Criança , Humanos , Lagos , Abastecimento de Água , Fluoretos
11.
Water Res ; 256: 121572, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38621316

RESUMO

The exploration of antibiotic resistance genes (ARGs) in drinking water reservoirs is an emerging field. Using a curated database, we enhanced the ARG detection and conducted a comprehensive analysis using 2.2 Tb of deep metagenomic sequencing data to determine the distribution of ARGs across 16 drinking water reservoirs and associated environments. Our findings reveal a greater diversity of ARGs in sediments than in water, underscoring the importance of extensive background surveys. Crucial ARG carriers-specifically Acinetobacter, Pseudomonas, and Mycobacterium were identified in drinking water reservoirs. Extensive analysis of the data uncovered a considerable concern for drinking water safety, particularly in regions reliant on river sources. Mobile genetic elements have been found to contribute markedly to the propagation of ARGs. The results of this research suggest that the establishment of drinking water reservoirs for supplying raw water may be an effective strategy for alleviating the spread of water-mediated ARGs.

12.
Mar Pollut Bull ; 202: 116363, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38621354

RESUMO

Planktonic organisms, which have direct contact with water, serve as the entry point for mercury (Hg), into the marine food web, impacting its levels in higher organisms, including fish, mammals, and humans who consume seafood. This study provides insights into the distribution and behavior of Hg within the Baltic Sea, specifically the Gulf of Gdansk, focusing on pelagic primary producers and consumers. Phytoplankton Hg levels were primarily influenced by its concentrations in water, while Hg concentrations in zooplankton resulted from dietary exposure through suspended particulate matter and phytoplankton consumption. Hg uptake by planktonic organisms, particularly phytoplankton, was highly efficient, with Hg concentrations four orders of magnitude higher than those in the surrounding water. However, unlike biomagnification of Hg between SPM and zooplankton, biomagnification between zooplankton and phytoplankton was not apparent, likely due to the low trophic position and small size of primary consumers, high Hg elimination rates, and limited absorption.

13.
Nanotechnology ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621372

RESUMO

A hierarchical sea urchin-like hybrid metal oxide nanostructure of ZnO nanorods deposited on TiO2 porous hollow hemisphere with a thin zinc titanate interface layer is specifically designed and synthesized forming a combined type I straddling and type II staggered junctions. The HHSs, synthesized by electrospinning, facilitate light trapping and scattering. The ZnO nanorods offer a large surface area for improved surface oxidation kinetics The interface layer of zinc titanate (ZnTiO3) between the TiO2 HHSs and ZnO nanorods regulates the charge separation in a closely coupled hierarchy structure of ZnO/ZnTiO3/TiO2. The synergistic effects of improved light trapping, charge separation, and fast surface reaction kinetics result in a superior photoconversion efficiency of 1.07% for the photoelectrochemical (PEC) water splitting with an outstanding photocurrent density of 2.8 mA cm-2 at 1.23 V vs. RHE.

14.
Mar Environ Res ; : 106511, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38622042

RESUMO

The study provides a comprehensive assessment of ballast water treatment systems (BWTS) selection regarding crucial parameters such as energy efficiency, fuel consumption, and CO2 emissions. The focus of the study is investigating the environmental impacts of BWTS and how these impacts can be considered in decision-making processes. In this context, it comprehensively analyzes the importance of decision-making parameters and the environmental consequences of BWTS applications. The potential impacts of the system on the sustainability of the maritime industry are highlighted. In this context, seven different BWTSs for a bulk carrier of 83,000 deadweight tonnes are evaluated using Analytical Hierarchy Process (AHP) and Preference Ranking Technique by Similarity to Ideal Solution (TOPSIS). According to the analysis, Operational Expenditure (0.314508), Capital Expenditure (0.249515), and Capacity (0.159952) are the most critical factors. Among the seven systems analysed, product G (0.8561137) emerges as the most suitable option. The analysis represents 3% of total emissions (456.5 tonnes CO2) and highlights the impact of BWTS on CO2 emissions. The results underline the need for innovative approaches aimed at ensuring the long-term sustainability of the maritime industry.

15.
ChemSusChem ; : e202400408, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622065

RESUMO

The development of a highly active photocatalyst for visible-light water splitting requires a high-quality semiconductor material and a cocatalyst, which promote the migration of photogenerated charge carriers and surface redox reactions. In this work, cocatalyst loading on an oxyfluoride photocatalyst Pb2Ti2O5.4F1.2 was applied to improve the water oxidation activity. Among the metal oxides examined, RuO2 was found to be the most suitable, and the O2 evolution activity depended on the preparation conditions of Ru/Pb2Ti2O5.4F1.2. The highest activity was obtained with RuCl3-impregnated Pb2Ti2O5.4F1.2, heated under a flow of H2 at 523 K. The H2-heated Ru/Pb2Ti2O5.4F1.2 showed an O2 evolution rate ~13 times higher than the analogues without the H2 treatment (e.g., RuO2/Pb2Ti2O5.4F1.2). Physicochemical analyses by means of X-ray absorption fine-structure spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and time-resolved-microwave-conductivity measurement indicated that the optimized photocatalyst contained partially-reduced RuO2 species having ~5 nm in size, which effectively trapped the photogenerated charge carriers and promoted the oxidation of water into O2. The optimized Ru/Pb2Ti2O5.4F1.2 was workable as an O2-evolving photocatalyst in Z-scheme overall water splitting, in combination of Ru-loaded, Rh-doped SrTiO3 photocatalyst.

16.
Dig Dis Sci ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622463

RESUMO

BACKGROUND: Gastrointestinal transit (GIT) is influenced by factors including diet, medications, genetics, and gut microbiota, with slow GIT potentially indicating a functional disorder linked to conditions, such as constipation. Although GIT studies have utilized various animal models, few effectively model spontaneous slow GIT. AIMS: We aimed to characterize the GIT phenotype of CFP/Yit (CFP), an inbred mouse strain with suggested slow GIT. METHODS: Female and male CFP mice were compared to Crl:CD1 (ICR) mice in GIT and assessed based on oral gavage of fluorescent-labeled 70-kDa dextran, feed intake, fecal amount, and fecal water content. Histopathological analysis of the colon and analysis of gut microbiota were conducted. RESULTS: CFP mice exhibited a shorter small intestine and a 1.4-fold longer colon compared to ICR mice. The median whole-GIT time was 6.0-fold longer in CFP mice than in ICR mice. CFP mice demonstrated slower gastric and cecal transits than ICR mice, with a median colonic transit time of 4.1 h (2.9-fold longer). CFP mice exhibited lower daily feed intakes and fecal amounts. Fecal water content was lower in CFP mice, apparently attributed to the longer colon. Histopathological analysis showed no changes in CFP mice, including tumors or inflammation. Moreover, CFP mice had a higher Firmicutes/Bacteroidota ratio and a relative abundance of Erysipelotrichaceae in cecal and fecal contents. CONCLUSIONS: This study indicates that CFP mice exhibit slow transit in the stomach, cecum, and colon. As a novel mouse model, CFP mice can contribute to the study of gastrointestinal physiology and disease.

17.
New Phytol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622763

RESUMO

Climate change-induced drought is a major threat to agriculture. C4 crops have a higher water use efficiency (WUE) and better adaptability to drought than C3 crops due to their smaller stomatal morphology and faster response. However, our understanding of stomatal behaviours in both C3 and C4 Poaceae crops is limited by knowledge gaps in physical traits of guard cell (GC) and subsidiary cell (SC). We employed infrared gas exchange analysis and a stomatal assay to explore the relationship between GC/SC sizes and stomatal kinetics across diverse drought conditions in two C3 (wheat and barley) and three C4 (maize, sorghum and foxtail millet) upland Poaceae crops. Through statistical analyses, we proposed a GCSC-τ model to demonstrate how morphological differences affect stomatal kinetics in C4 Poaceae crops. Our findings reveal that morphological variations specifically correlate with stomatal kinetics in C4 Poaceae crops, but not in C3 ones. Subsequent modelling and experimental validation provide further evidence that GC/SC sizes significantly impact stomatal kinetics, which affects stomatal responses to different drought conditions and thereby WUE in C4 Poaceae crops. These findings emphasize the crucial advantage of GC/SC morphological characteristics and stomatal kinetics for the drought adaptability of C4 Poaceae crops, highlighting their potential as future climate-resilient crops.

18.
Mol Pharm ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623055

RESUMO

Folate receptors including folate receptor α (FRα) are overexpressed in up to 90% of ovarian cancers. Ovarian cancers overexpressing FRα often exhibit high degrees of drug resistance and poor outcomes. A porphyrin chassis has been developed that is readily customizable according to the desired targeting properties. Thus, compound O5 includes a free base porphyrin, two water-solubilizing groups that project above and below the macrocycle plane, and a folate targeting moiety. Compound O5 was synthesized (>95% purity) and exhibited aqueous solubility of at least 0.48 mM (1 mg/mL). Radiolabeling of O5 with 64Cu in HEPES buffer at 37 °C gave a molar activity of 1000 µCi/µg (88 MBq/nmol). [64Cu]Cu-O5 was stable in human serum for 24 h. Cell uptake studies showed 535 ± 12% bound/mg [64Cu]Cu-O5 in FRα-positive IGROV1 cells when incubated at 0.04 nM. Subcellular fractionation showed that most radioactivity was associated with the cytoplasmic (39.4 ± 2.7%) and chromatin-bound nuclear (53.0 ± 4.2%) fractions. In mice bearing IGROV1 xenografts, PET imaging studies showed clear tumor uptake of [64Cu]Cu-O5 from 1 to 24 h post injection with a low degree of liver uptake. The tumor standardized uptake value at 24 h post injection was 0.34 ± 0.16 versus 0.06 ± 0.07 in the blocking group. In summary, [64Cu]Cu-O5 was synthesized at high molar activity, was stable in serum, exhibited high binding to FRα-overexpressing cells with high nuclear translocation, and gave uptake that was clearly visible in mouse tumor xenografts.

19.
Heliyon ; 10(7): e29189, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623211

RESUMO

This study aimed to assess water contamination and associated health risks for populations residing in the mining areas of Kambélé and Bétaré-Oya. Key parameters, including pH, EC, TDS, TSS, and concentrations of metallic elements (Cd, Cr, Fe, Pb and Mn), were measured using established water analysis techniques. The analysis included multivariate statistical assessments, calculation of metal pollution and water quality indices, and health risk determinations, including daily intake (DI) and hazard quotient (HQ). Findings indicate a diverse pH range (5.26 < pH < 8.72), low mineralization (33.22 < EC (µS/cm) < 179.64), and elevated TSS content (22.53 < TSS (in mg/l) < 271.51). Metallic elements were observed in the descending order of Fe > Mn > Pb > Cr > Cd. Water quality assessments using the Water Quality Index (WQI) categorized sites as displaying doubtful to very poor quality, notably Woupy (WQI = 719.14) in Kambélé and Mali (WQI = 794.24) in Bétaré-Oya, with Heavy metal Pollution Index (HPI) values exceeding 100. These outcomes highlight consistent chemical degradation of surface water, posing potential risks to local populations' health and well-being. The study emphasizes the critical need for proactive environmental protection measures in mining areas, recommending the adoption of healthy mining practices and effective site reclamation strategies. Furthermore, future studies should consider exposure duration's potential impact on residents' health problems in these areas. Overall, this study contributes significantly to understanding and addressing the intricate interplay between mining activities, water quality, and public health in the Cameroon countryside.

20.
Data Brief ; 54: 110375, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623543

RESUMO

The Response Surface Methodology (RSM) was employed to examine the impact of the pumping system in a photovoltaic solar water pumping system, while operating under ideal conditions. The input parameters for optimizing the pump performance of the PV water pump include three parameters: Solar irradiance (550-950, W/m2), temperature (30-45, °C), and voltage (420-540, V). The experimental values of PV water pump efficiency showed that the efficiency of PV water pumps was in the range of 55.24-80.80% of the experiment. At a solar irradiance of 750 W/m2, a voltage of 480 V and a temperature of 37.5 °C shows the maximum efficiency of the solar PV water pump systems was 80.80% under optimal conditions. This work demonstrates the potential of solar water pumps as a reliable, cost-effective, and environmentally friendly solution to support agriculture in remote areas. In addition, the costs and economic parameters of solar photovoltaic water pumps and conventional systems were compared by the social return on investment (SROI) evaluation. This indicates that sales are profitable or create social value that benefits society and local stakeholders in remote areas. This work demonstrates the potential of solar water pumps as a reliable, cost-effective, and environmentally friendly solution to support agriculture in remote areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...